Standard ID	Standard Text	Edgenuity Lesson Name
N-Q	Quantities	
	Reason quantitatively and use units to solve problems.	
N-Q. 1	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displavs.	
		Scatterplots
N-Q. 2	Define appropriate quantities for the purpose of descriptive modeling.	
		Scatterplots
N-Q. 3	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	
		Scatterplots
$\mathrm{N}-\mathrm{CN}$	The Complex Number System	
	Perform arithmetic operations with complex numbers.	
N-CN. 1	Know there is a complex number i such that $i^{2}=-1$, and every complex number has the form $a+b i$ with a and b real.	
		Complex Numbers
		Operations with Complex Numbers
		Writing Polynomial Functions from Complex Roots
N-CN. 2	Use the relation $\mathrm{i}^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	
		Operations with Complex Numbers
		Writing Polynomial Functions from Complex Roots
		Simplifying Rational Expressions by Factoring
N-CN. 3	Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.	
	Use complex numbers in polynomial identities and equations.	
N-CN. 7	Solve quadratic equations with real coefficients that have complex solutions.	
		The Quadratic Formula
		The Fundamental Theorem of Algebra
N-CN. 8	Extend polynomial identities to the complex numbers.	
		The Fundamental Theorem of Algebra
		Writing Polynomial Functions from Complex Roots
N-CN. 9	Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.	
		The Rational Roots Theorem
		The Fundamental Theorem of Algebra

Standard ID	Standard Text	Edgenuity Lesson Name
A-SSE	Seeing Structure in Expressions	
	Interpret the structure of expressions	
A-SSE. 1	Interpret expressions that represent a quantity in terms of its context.	
A-SSE.1.a	Interpret parts of an expression, such as terms, factors, and coefficients.	
		Real Numbers
		Simplifying Expressions
		Introduction to Polynomials
		Addition and Subtraction of Polynomials
		Laws of Exponents
		Multiplication of Polynomials
		Sum and Difference of Two Cubes
		Factoring Polynomials Completely
		Simplifying Polynomial Expressions
A-SSE.1.b	Interpret complicated expressions by viewing one or more of their parts as a single entity.	
		Simplifying Expressions
		The Fundamental Theorem of Algebra

Standard ID	Standard Text

Edgenuity Lesson Name
A-SSE. 2 Use the structure of an expression to identify ways to rewrite it.

Laws of Exponents
Simplifying Polynomial Expressions
Quadratic in Form Polynomials
Negative Exponents
Simplifying Rational Expressions
Simplifying Rational Expressions by Factoring
Simplifying Perfect Roots
Simplifying Nonperfect Roots
Rational Exponents
Adding and Subtracting Radicals
Multiplying Radicals
Dividing Radicals
Solving Exponential Equations by Rewriting the Base
Evaluating Logarithmic Expressions
Properties of Logarithms
Base e
Solving Exponential and Logarithmic Equations
Modeling with Exponential and Logarithmic
Equations
Geometric Series

A-APR	Arithmetic with Polynomials and Rational Expressions Perform arithmetic operations on polynomials	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. A-APR. 1
	Laws of Exponents Multiplication of Polynomials	
Simplifying Polynomial Expressions		

Standard ID	Standard Text	Edgenuity Lesson Name
A-APR. 3	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.	Graphs of Polynomial Functions Graphing Polynomial Functions Solving Polynomial Equations using Technology
	Use polynomial identities to solve problems	
A-APR. 4	Prove polynomial identities and use them to describe numerical relationships.	Sum and Difference of Two Cubes Factoring Polynomials Completely
A-APR. 5	Know and apply the Binomial Theorem for the expansion of $(x+y)$ to the n power in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.	The Binomial Theorem
	Rewrite rational expressions	
A-APR. 6	Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x)$, $b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.	Division of Polynomials Synthetic Division and the Remainder Theorem
A-APR. 7	Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.	Division of Polynomials Simplifying Rational Expressions Simplifying Rational Expressions by Factoring Multiplying and Dividing Rational Expressions Adding and Subtracting Rational Expressions
A-CED	Creating Equations Create equations that describe numbers or relationships	
A-CED. 1	Create equations and inequalities in one variable and use them to solve problems.	Properties of Equality Solving Equations Inequalities Problem Solving Word Problems Performance Task: Going on a Round Trip

Standard ID	Standard Text	Edgenuity Lesson Name
A-CED. 2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	
		Writing Two-Variable Linear Equations
		Scatterplots
		Two-Variable Linear Inequalities
		Modeling with Linear Systems
		Performance Task: Annual Salaries and Gender
		Solving Exponential and Logarithmic Equations
		Modeling with Exponential and Logarithmic
		Equations
A-CED. 3	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	
		Linear Programming
A-CED. 4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	
		Literal Equations
A-REI	Reasoning with Equations and Inequalities	
	Understand solving equations as a process of reasoning and explain the reasoning	
A-REI. 1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to iustifv a solution method.	
A-REI. 2	Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	
		Rational Equations
		Rational Inequalities
		Radical Equations and Extraneous Roots
		Solving Equations Containing Two Radicals
		Performance Task: Roller Coaster Design
	Represent and solve equations and inequalities graphically	
A-REI. 10	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	
		Linear Functions
		Quadratic Functions

Standard ID	Standard Text
A-REI. 11	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to grap the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
A-REI. 12	Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
F-IF	Interpreting Functions Understand the concept of a function and use function notation
F-IF. 1	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y $f(x)$.
F-IF. 2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
F-IF. 3	Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

Edgenuity Lesson Name

Solving Linear Systems Graphically
Solving One-Variable Equations with Systems
Performance Task: Annual Salaries and Gender
Solving Polynomial Equations using Technology

Standard ID	Standard Text

Edgenuity Lesson Name
Interpret functions that arise in applications in terms of the context
F-IF. $4 \quad$ For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

Exploration of the Graphing Calculator
Symmetry
Rate of Change
Linear Functions
Scatterplots
Two-Variable Linear Inequalities
Quadratic Functions
Quadratic Inequalities
Modeling with Quadratic Equations
Solving Linear Systems Graphically
Linear Programming
Solving One-Variable Equations with Systems
Performance Task: Annual Salaries and Gender
Graphing Rational Functions
Graphing Exponential Functions
Modeling with Functions
Performance Task: Production Schemes
F-IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

Relations and Functions
Function Inverses
Square Root Functions
Graphing Logarithmic Functions
Transformations of Functions
Domain and Range
Analyzing Compositions of Functions
Performance Task: Production Schemes
F-IF. $6 \quad$ Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Rate of Change

Standard ID Standard Text
Edgenuity Lesson Name
Analyze functions using different representations
F-IF. $7 \quad$ Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases
-IF.7.a Graph linear and quadratic functions and show intercepts, maxima, and minima.
Linear Functions
F-IF.7.b Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

Square Root Functions
Graphing Radical Functions
Absolute Value Functions
Piecewise Defined Functions
Step Functions
Performance Task: Production Schemes
F-IF.7.c Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

Monomial Functions
Graphs of Polynomial Functions
Graphing Polynomial Functions
Solving Polynomial Equations using Technology
F-IF.7.d Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
F-IF.7.e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

Graphing Exponential Functions
Graphing Logarithmic Functions
F-IF. $8 \quad$ Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
F-IF.8.a Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

Solving Quadratic Equations by Factoring Completing the Square

Modeling with Quadratic Equations

Standard ID	Standard Text	Edgenuity Lesson Name
F-IF.8.b	Use the properties of exponents to interpret expressions for exponential functions.	
		Graphing Exponential Functions
		Solving Exponential Equations by Rewriting the Base
		Solving Exponential and Logarithmic Equations
		Modeling with Exponential and Logarithmic Equations
F-IF. 9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	
		Transformations of Functions
		Modeling with Functions
		Performance Task: Production Schemes
F-BF	Building Functions	
	Build a function that models a relationship between two quantities	
F-BF. 1	Write a function that describes a relationship between two quantities.	
F-BF.1.a	Determine an explicit expression, a recursive process, or steps for calculation from a context.	
F-BF.1.b	Combine standard function types using arithmetic operations.	
		Function Operations
		Composition of Functions
		Composition of Polynomial Functions
F-BF.1.c	Compose functions.	
		Composition of Functions
F-BF. 2	Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	
	Build new functions from existing functions	
F-BF. 3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technologv.	
		Transformations of Quadratic Functions
		Transformations of Functions
F-BF. 4	Find inverse functions.	
F-BF.4.a	Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse.	
		Function Inverses
		Square Root Functions

Standard ID	Standard Text

Edgenuity Lesson Name
F-BF.4.b Verify by composition that one function is the inverse of another.
F-BF.4.c Read values of an inverse function from a graph or a table, given that the function has an inverse.
F-BF.4.d Produce an invertible function from a non-invertible function by restricting the domain.
F-BF. $5 \quad$ Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

F-TF	Trigonometric Functions
	Extend the domain of trigonometric functions using the unit circle

F-TF. 1 Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.

Angles in Standard Position
 Radian Measure

F-TF. 2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.

The Unit Circle
Reciprocal Trigonometric Functions
Evaluating the Six Trigonometric Functions
F-TF. $3 \quad$ Use special triangles to determine geometrically the values of sine, cosine, tangent for $\mathrm{pi} / 3, \mathrm{pi} / 4$ and $\mathrm{pi} / 6$, and use the unit circle to express the values of sine, cosine, and tangent for pi-x, pi+x, and 2pi-x in terms of their values for x , where x is anv real number.
F-TF. 4 Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions. Model periodic phenomena with trigonometric functions
F-TF. 5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.

Graphing Sine and Cosine
Changes in Period and Phase Shift of Sine and
Cosine Functions
Solving Trigonometric Equations
Modeling with Periodic Functions
F-TF. $6 \quad$ Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.
F-TF. $7 \quad$ Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.

Right Triangle Trigonometry
Reciprocal Trigonometric Functions

Standard ID	Standard Text	Edgenuity Lesson Name
	Prove and apply trigonometric identities	
F-TF. 8	Prove the Pythagorean identity $\sin ^{2}$ (theta) $+\cos ^{2}$ (theta) $=1$ and use it to find \sin (theta), \cos (theta), or \tan (theta) given $\sin ($ theta), \cos (theta), or \tan (theta) and the quadrant of the angle.	Evaluating the Six Trigonometric Functions
F-TF. 9	Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.	
S-ID	Interpreting Categorical and Quantitative Data Summarize, represent, and interpret data on a single count or measurement variable	
S-ID. 4	Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.	Standard Deviation Introduction to Normal Distributions Applications with Standard Normal Distribution Statistical Inferences Hypothesis Testing
	Summarize, represent, and interpret data on two categorical and quantitative variables	
S-ID. 5	Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	
S-ID. 6	Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	
S-ID.6.a	Fit a function to the data; use functions fitted to data to solve problems in the context of the data.	
		Scatterplots
S-ID.6.b	Informally assess the fit of a function by plotting and analyzing residuals.	
		Scatterplots
S-ID.6.c	Fit a linear function for a scatter plot that suggests a linear association.	
		Scatterplots
	Interpret linear models	
S-ID. 7	Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	
		Linear Functions
S-ID. 8	Compute (using technology) and interpret the correlation coefficient of a linear fit.	
		Scatterplots
S-ID. 9	Distinguish between correlation and causation.	
		Scatterplots

Standard ID	Standard Text	Edgenuity Lesson Name
S-IC	Making Inferences and Justifying Conclusions	
	Understand and evaluate random processes underlying statistical experiments	
S-IC. 1	Understand statistics as a process for making inferences about population parameters based on a random sample from that population.	
		Statistical Inferences
		Hypothesis Testing
S-IC. 2	Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation.	
		Properties of Probability Distributions
		Expected Value
		Binomial Distribution
	Make inferences and justify conclusions from sample surveys, experiments, and observational studies	
S-IC. 3	Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	
		Designing a Study
S-IC. 4	Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	
		Statistical Inferences
S-IC. 5	Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.	
		Binomial Distribution
		Hypothesis Testing
S-IC. 6	Evaluate reports based on data.	
		Representing Data
		Statistical Inferences
		Hypothesis Testing

